

V-Cone Application Guide

Industry: Chemical

Product: Potash, Salts & Chlorine.

Application: Flow measurement in a continuous process. Steam, condensate and feedwater in a Power Station.

Measurement Challenge/Difficulty: The customer was completely frustrated since none of the flowmeters they tried performed as needed. The main problem is that condensate is a very difficult fluid to measure because it is never just water. Condensate contains steam bubbles which cause shocks and cavitation which typically destroy other types of flowmeters..

Previous Method: Pitot Tube/orifice for the steam side of the process. On the condensate side of the process, the customer tried a variety of technologies. Nothing worked!

Solution: We explained the basic V-Cone features to the customer. We highlighted the mixing and memory effect of the V-Cone which results in crushing the large bubbles to a myriad of microscopic ones, thereby eliminating the usual condensate problems.

Date Installed: April 1995

System Diagram: None

Submitted by: Azriel Kutasov • KAMA LTD, Israel

Additional Comments: The customer requested our performance guarantee which included the return of the V-Cones if they were not successful in this application. We gave them that guarantee and the V-Cones are working to their satisfaction.

Literature No.

24509-71/Rev. 1.1

Industry:

Chemical

Niche Market:

Facilities, Power Station

Process:

Condensate from Power Station

Product:

Potash, Salts, Chlorine

Fluid:

Steam/Condensate/Feedwater

Viscosity & Sp.G:

0.24 cP

Flow Rate:

7.,000 to 70,000 kg/h

Pressure:

4 bar gauge

Temperature:

120 degrees C.

Size:

4 inch

Date:

April 1995

Submitted by:

Azriel Kutasov KAMA LTD Israel