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Research Developments In Wet Gas Metering with McCrometer V-Cone® Meters

            Richard Steven, McCrometer Inc. 

1    INTRODUCTION 

At the 2002 North Sea Flow Measurement Workshop (NSFMW) NEL and McCrometer jointly 
presented the results and analysis of the UK’s Department of Trade and Industry (DTI) funded
V-Cone® meter wet gas flow tests on the NEL Wet Gas Loop. Two 6” beta ratios (0.55 and 0.75) 
were tested and for each meter the parameters influencing the differential pressure reading with 
wet gas flows were identified and found to be similar to other Differential Pressure (DP) meters. 
Correlations were then offered that would correct for the V-Cone meters’ liquid induced error in
the gas flowrate prediction for a known liquid flowrate or liquid to gas flowrate ratio.  

This paper briefly summarises the V-Cone meter technology and then discusses the results of 
repeat wet gas flow tests at NEL in May 2003 (at nominally 15 and 60 Bar) for the 0.75 beta ratio 
V-Cone meter, to show the repeatability of the meter with wet gas flows and the reliability of the
previously published wet gas flow correlation within the NEL parameter range. This paper then
discusses wet gas flow testing done on a 4”, 0.75 beta ratio V-Cone meter at CEESI in October 
2002 across a different parameter range to that of NEL and compares the 0.75 beta ratio data 
sets at the two test facilities. The V-Cone meters 0.75 beta ratio correlation is then applied to the
independent CEESI wet gas flow data set to investigate the applicability of the NEL data based 
correlation out with the NEL test range. With the correlations applicability shown, a discussion on 
the industrial advantages of a proposed Tracerflow and V-Cone meter combination is given. This 
is followed with new data showing the 0.75 beta ratio V-Cone meters performance at greater
Lockhart-Martinelli parameters than previously tested (up to 0.5). A new correlation is discussed 
for this expanded range and the results of applying this new correlation to the NEL data set are
presented. Finally, a rare field test showing the performance of a Wafer-Cone® meter with wet  
gas flow is discussed. 

2    THE V-CONE METER 

The V-Cone meter is a patented DP Meter. There are two forms of the meter, one called the 
precision tube “V-Cone” meter and the other the “Wafer-Cone” meter. The precision tube
“V-Cone” meter has a centrally mounted cone pointing upstream supported at its nose by a strut. 
The upstream pressure is read from a wall tapping and the downstream pressure is read from the
centre of the back face of the cone. The “Wafer-Cone” meter has a centrally mounted cone
pointing upstream supported by a downstream strut. The upstream and downstream pressures 
are read from a wall tapping. Figures 1a and 1b show sketches of the precision tube “V-Cone” 
and “Wafer-Cone” meters respectively.  

The shape and position of the primary element is the only difference between these meters and
other DP meters. The precision tube “V-Cone” and the “Wafer-Cone” meters are in every way DP 
meters (with some advantages gained from the choice of a cone as the primary element). 
Therefore with single phase flow the generic DP meter equation form is used (with unique
V-Cone meter constants) and all secondary instrumentation is the same as for any DP meter.  

The advantages of using a cone as a DP producing element with single phase flows are well
documented. These include built in flow conditioning reducing the required upstream lengths to 
very short lengths –typically no more than three pipe diameters [1, 2], low total head loss [3] and
high turndown achieved for a single DP transmitter [4]. For single phase flows with calibration the 
precision tube V-Cone meter will give ± 0.5% and the Wafer-Cone meter will give ± 1%.  
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Figure 1a.   The Precision “V-Cone” Meter         Figure 1b. The ‘Wafer-Cone” Meter. 

Research on the precision tube V-Cone meters performance with wet gas flows has been on
going for the last few years and this paper will now discuss previously unpublished tests, analysis
and conclusions from research carried out after the NSFMW 2002 meeting. In this paper unless 
otherwise stated the “V-Cone” meter refers to the precision “V-Cone” meter (Figure 1a).  

3    THE REPEATIBILTY OF THE V-CONE METER WITH WET GAS FLOWS

In 2002 NEL tested 6” 0.55 and 0.75 beta ratio V-Cone meters and the results and analysis were
reported at the 2002 NSFMW [5]. It was found that like other DP meters the V-Cone meter over-
read the gas flowrate with a wet gas flow. The scale of this positive error induced by a liquids
presence in a gas flow was reported to be dependent on the Lockhart-Martinelli parameter (X), 
the pressure (or gas to liquid density ratio) and the gas densiometric Froude number ( gFr ). The
definition of the Lockhart-Martinelli parameter is the square root of the ratio of the superficial
liquid flow inertia force to the superficial gas flow inertia force. It is calculated by equation 1. The
definition of the gas densiometric Froude number is the square root of the ratio of gas inertia
force to the liquid gravitational force. It is calculated by equation 2. Note that in equation 2 the 
term sgU is the superficial gas velocity which is calculated by equation 3.
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The positive error induced on any DP meter by a liquids presence in a gas flow is commonly 
presented in the form of the square root of the ratio of the actual read DP from the wet gas flow
( tpP∆ ) and the DP that would be expected to be read from that DP meter if the gas phase flowed 

alone through the meter ( gP∆ ). Therefore the over-reading is usually expressed by the term

gtp PP ∆∆ . Alternatively the absolute percentage liquid induced error for any DP meter can be 

approximated to be ( ) %100*1PP gtp −∆∆ .  
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It was reported [5] that as the Lockhart-Martinelli parameter (X) increased for a set gas to liquid 
density ratio and gas densiometric Froude number (Frg) the over-reading increased. If the gas to
liquid density ratio increased for a set Lockhart-Martinelli parameter and gas Densiometric Froude
number the over-reading reduced. If the gas densiometric Froude number increased for a set
Lockhart-Martinelli parameter and gas to liquid density ratio the over-reading increased.  

In May 2003 McCrometer re-tested the 6” 0.75 beta ratio meter at NEL. The original test matrix 
covered 15, 30 and 60 Bar, Lockhart-Martinelli parameters up to 0.3 and gas flowrates from 400 
to 1000 m3/hr. The new tests were at 15 and 60 Bar, Lockhart-Martinelli parameters up to 0.5 and
gas flowrates between 400 and 1000 m3/hr. A significant obstruction (not described for 
confidentiality reasons) was positioned ten diameters upstream of the V-Cone meters. The old
and new results were compared. Figure 2 shows the comparison of all the 2001 and 2003 0.75 
beta ratio data sets (with the exception of X>0.3 data which is discussed later). 

6", 0.75 Beta V-Cone Meter, All Data, NEL Wet Gas Test
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Figure 2.  The NEL 2001 and 2003 data sets.  

Figure 2 shows that the meter is giving repeatable results for the relationship between the over-
reading and the Lockhart-Martinelli parameter across the same pressure (i.e. gas and liquid 
density ratio) and gas densiometric Froude number ranges.  

Figure 3 shows the 2003 data (X<0.3) for separate pressures. Here no obvious pressure effect is 
visible. However Figures 4 and 5 show the individual gas densiometric Froude numbers at 15 and
60 bar respectively. Here it is seen that the gas densiometric Froude number effect is clearly
reproduced with the gradient on the graph increasing with increasing gas densiometric Froude
number. (This effect is seen to be slightly more pronounced at the lower pressure which is a
repeat of the performance found in the original 2001 data set.) It can be seen from Figures 4 and 
5 that the ranges of the gas densiometric Froude number in the 15 Bar and 60 Bar tests are not 
similar. For 15 Bar the tests matrix had 0.83 ≤≤ gFr 1.99 and for the 60 Bar tests the test matrix 

had 1.7 ≤≤ gFr 4.30. Therefore the reason no pressure (or gas to liquid density ratio) effect is 
visible in Figure 3 is solely due to the differences in gas Densiometric Froude number masking
the effect. In fact the effect is still there as is shown with the good results obtained when applying
the new data set to the previously published V-Cone 0.75 beta ratio wet gas correlation [5]. 

To numerically show similarity between the old and new data sets the correlation formed from the
old 2001 data [5] (reproduced here as equation 4 with gas to liquid density ratio parameters 4a to
4c) was applied to the new 2003 data with the liquid reference meter reading used as an input.
The results are shown in Figures 6 and 7.
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2003, NEL Wet Gas Test
 6", 0.75 Beta V-Cone Meter
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Figure 3. The 2003 0.75 beta ratio data with separated pressures. 

2003  NEL Wet Gas Test,
6", 15 Bar, 0.75 Beta V-Cone Meter
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Figure 4. The 2003 0.75 beta ratio 15 Bar data with separated gas densiometric Froude numbers. 

2003  NEL Wet Gas Test.
6", 60 Bar, 0.75 Beta V-Cone Meter
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Figure 5. The 2003 0.75 beta ratio 60 Bar data with separated gas densiometric Froude numbers.  
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V-Cone Meter Wet Gas Correlation: 
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0.75 Beta V-Cone Meter:
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The gas to liquid density ratio limit of the applicability of equations 4a to 4c is from 0.022 to 1.0.  

0.75 Beta 6" V-Cone Meter
2003 Data Corrected with 2002 Correlation
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Figure 6. The uncorrected and corrected gas mass flowrate percentage error. 

0.75 Beta 6" V-Cone Meter
2002 Correlation Performance on 2003 Data Set
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Figure 7. The corrected gas mass flowrate percentage error. 
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Therefore, the repeat tests at NEL have shown that the V-Cone meter is repeatable in wet gas 
flow and the 0.75 beta ratio V-Cone meter correlation can be relied upon to give a correction for a
known liquid flowrate at the NEL conditions at least. It was seen that the obstruction ten 
diameters upstream had no significant effect on the wet gas meters performance.  

The question was now whether the 0.75 beta ratio V-Cone meter correlation could be relied upon
to give reliable corrections for a known liquid flowrate for other conditions such as different pipe
size, gas flowrates, fluid types etc. Data independent of the NEL tests exists from an October 
2002 wet gas flow test at the CEESI wet gas loop. This therefore allowed a test on the validity of 
the NEL based 0.75 beta ratio V-Cone meter wet gas correlation on conditions out with the NEL
test conditions. The NEL test conditions were nitrogen and kerosene at 15, 30 and 60 bar, 400 to 
1000 m3/hr up to a Lockhart-Martinelli parameter value of 0.5 in a 6” schedule 80 pipe. The 
CEESI test conditions were natural gas with decane at 50 bar, 150 to 400 m3/hr up to a Lockhart-
Martinelli parameter value of 0.25 in a 4” schedule 80 pipe. Figure 8 shows the CEESI 0.75 beta 
ratio V-Cone meter results on an over-reading to Lockhart-Martinelli parameter graph.  

CEESI  Wet Gas Test at 50 Bar
4", sch 80, 0.75 Beta
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Figure 8. All the CEESI 0.75 beta V-Cone meter data 

As only one pressure was tested it is not possible to see any gas to liquid density ratio effect but 
three gas flowrates were tested so the three corresponding gas densiometric Froude numbers 
can be separated out. Figure 9 shows this. So as at NEL, the CEESI data is showing that as the 
gas densiometric Froude number increases for a set Lockhart-Martinelli parameter and pressure
(or gas to liquid density ratio) the over-reading increases.  

It is interesting to plot the NEL and the CEESI wet gas test loops 0.75 beta ratio V-Cone meter 
data on the same over-reading to Lockhart-Martinelli parameter graph. This is done in Figure 10. 
As the pipe size, fluids types and gas flowrates are different for the two test rigs this shows the
combined effect these different parameters have on the magnitude of the 0.75 beta ratio meters 
over-reading. There appears to be no significant effect. If the correlation prediction of pressure
effect is correct then as the NEL data based correlation was formed from three pressures (15, 30
and 60 bar) and the CEESI data is set at 50 bar it would be expected that the CEESI 50 bar data 
would fall between the NEL 30 and 60 Bar data. It is seen in Figure 10 that this does happen. The
final check on the applicability of the NEL data based correlation is to apply the correlation to the
CEESI data set (with the CESSI liquid reference meters values used as an input). The results of
this analysis are shown in Figures 11 and 12. Here it is seen that the previously published NEL 
data based wet gas correlation corrects the liquid induced error found at CEESI for a known liquid 
flowrate to ± 2% with a few outliers slightly out with this. It is therefore concluded that the
correlation can be used with some confidence for different pipe sizes, gas flowrates and fluid 
types. 
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CEESI October Wet Gas Test at 50 Bar
4",sch 80, 0.75 Beta
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Figure 9. The CEESI tests with separated out gas densiometric Froude numbers.

Liquid Induced Over-Reading vs. X
Comparison for NEL 6" and CEESI 4" 0.75 Beta Meters
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Figure 10. The combined data from NEL and CEESI. 

CEESI 50 Bar, 4" 0.75 Beta Wet Gas Data
Uncorrected and Corrected Percentage Error 
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Figure 11. The NEL data based correlation corrected and uncorrected CEESI data. 
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CEESI 50 Bar 4" 0.75 Beta Wet Gas Data
Corrected with 2002 Correlation
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Figure 12. The NEL data based correlation corrected CEESI data. 

3    THE APPLICATION OF TRACER INJECTION TECHNIQUES WITH V-CONE METERS

The published 0.75 beta ratio V-Cone meter wet gas correlation has been shown to give reliable
results for repeat tests at NEL and independent tests at CEESI under different flow conditions.
The repeat tests at NEL also indicated that a disturbance ten diameters upstream of the V-Cone
has no significant effect on the wet gas performance. This builds confidence in the V-Cone 
meters performance with real wet natural gas production flows. The V-Cone meter has been used
for some years as a meter for wet natural gas production flows although often the operators have
ignored the liquid induced error (as they have done with many other flow meters). With 
confidence in the V-Cone meter wet gas correlations performance the correlation can be applied
on new or existing wet natural gas flows with V-Cone meters for known liquid flowrates.  

A popular method for finding the liquid flowrate in a wet natural gas flow is to use a tracer
injection method. The Shell developed technique is well documented [6, 7] and it offers water and
liquid hydrocarbon flowrate estimations to ± 10%.  For the last few years the tracer injection 
technique has been applied with the Venturi meter and a Venturi meters wet gas flow correlation
to predict the gas and liquid flowrates. With the development of the V-Cone meter wet gas 
correlation this same metering technique can be applied using a V-Cone meter as the primary
meter. In fact comparing wet gas meter results from the NEL test loop it appears that the V-Cone
meter has advantages over the Venturi meter. These are now discussed. 

The main advantage is that the V-Cone meter is less sensitive to the liquid loading of a gas flow 
than the Venturi meter. That is for identical wet gas flow conditions a V-Cone meter has a smaller 
error than a Venturi meter and for a set wet gas differential pressure for each meter type a
fluctuating liquid flowrate corresponds to a smaller fluctuation in the gas flowrate for a V-Cone
meter compared to a Venturi meter. When the responses of Venturi and V-Cone meters at the 
same wet gas flow conditions are plotted on an over-reading to Lockhart-Martinelli parameter 
graph the gradient of the V-Cone meter is slightly less than that of the Venturi meter. Figure 13
shows a plot of NEL 6”, 0.55 beta ratio V-Cone and Venturi meter 60 Bar data sets from the DTI 
funded Flow Programme. For a simple example of how this relates to a V-Cone meter advantage
when applying tracer injection technology the basic “Murdock” type wet gas correction [8] has 
been fitted to the data. The Murdock correction method for predicting the gas mass flowrate is
equation 5.  Note “M” is the “Murdock” gradient of the plots in Figure 13. 
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Figure 13. V-Cone and Venturi data for the same wet gas flow conditions. 

Substituting equation 1 into equation 5 gives equation 6. 















ρ

ρ
+

∆ρ
=

l

g

g

.
l

.

tpgdt
g

.

m

mM1

P2YCEA
m (6) 

Now note that for any given DP meter type the numerator (the single phase equation) for a given
steady wet gas flow condition will be a constant as will be the gas to liquid density ratio. Also M is 
constant for a chosen meter (for this simple correction method). Therefore we can group some of 
the terms in equation 6 to give constant values for that particular wet gas flow condition in 
question as shown in equation 7 and equation 8. 
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Equation 6 can now be written as equation 9 and rearranged to equation 10. 
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Taking the derivative of equation 10 gives equation 11: 
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For a set wet gas flow the densities are constant. The Venturi and V-Cone “Murdock” gradients 
are set and the Venturi meter gradient is found from experiment to be greater than the V-Cone 
meter gradient (e.g. see Figure 13). Therefore we have equations 11a and 11b: 
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As it is found that VenturiConeV MM <−  then we now know that the magnitude (or modulus) of the
V-Cone meters liquid to gas mass flowrate gradient is greater than the Venturi meters liquid to 
gas mass flowrate gradient (see equation 12). 
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Both terms are negative so the V-Cone meter has a steeper negative gradient than the Venturi
meter in a gas mass flow to liquid mass flow plot for the set differential pressures being read by
each meter for that particular wet gas flow condition. A steeper gradient is an advantage when
applying the tracer injection technique to obtain the estimated liquid mass flowrate to ± 10% in 
order to use this liquid flowrate value as an input to the chosen meters gas mass flowrate
correction factor. The reason for this is as following. If a Venturi meter and a V-Cone meter were 
used in identical wet gas flow conditions both have published correlations stating that for a known
liquid flowrate the gas flowrate can be found to ± 2%. Therefore, if this ± 2% (or what ever the 
small simplified correlation uncertainty of this particular Murdock correlation example is) is 
ignored it can be assumed that for a given wet gas flow condition with a precise liquid mass
flowrate entered into the correlations both meters give the same correct gas mass flowrate. That 
is equation 5 leads to equation 12. 
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However, in reality there will not be a precise liquid mass flowrate value available. The available 
estimation will be the tracer injections ±10% value. That is, the liquid mass flowrate input may be
out by ±10% and this error will have a knock on effect on the gas mass flowrate prediction error 
for both meter types. However, the steeper the negative gradient value of equation 11 the less 
this knock on effect will be. In other words the V-Cone meter wet gas flow correlation is less 
sensitive to errors in the liquid flowrate estimation than the Venturi meter wet gas flow correlation. 
Graphically this is seen in Figure 14. 
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Figure 14 is a sketch of a situation where for a set wet gas flow condition the V-Cone and Venturi 
meters individual differential pressures are read and for those set differential pressures the family 
of possible gas to liquid mass flowrates for each meter are calculated with equation 12. The liquid
mass flowrate is found by a tracer injection method with a ±10% uncertainty. The black 
horizontal line indicates the actual liquid flowrate and the dashed lines are the ±10% limits. That 
is the estimated liquid mass flowrate will be anywhere within these dashed lines. Where as for the
correct liquid mass flowrate input either meters correlation gives the correct gas mass flowrate
(ignoring both meter correlations same small uncertainty) an incorrect liquid mass flowrate gives 
an associated gas mass flowrate error. For a set differential pressure read an over estimation of 
the liquid flowrate leads to an under prediction of the gas flowrate and an under estimation of the 
liquid flowrate leads to an over prediction of the gas flowrate. Figure 14 shows that for the V-Cone 

meter with the steeper gradient this associated gas mass flowrate error ( ConeV,g

.
m −∆ ) is smaller 

than for the Venturi meter with shallower gradient ( Venturi,g

.
m∆ ). Hence, using a V-Cone meter 

instead of a Venturi meter with tracer injection technology gives a lower uncertainty in the gas 
mass flowrate prediction. 

Figure 14. Constant differential pressure graph showing the V-Cone and Venturi meter relative
gas mass flowrate errors due to the ±10% tracer injection liquid mass flowrate estimation.     

Note: Theoretically if the two DP meters were installed in series the intersection of the two meters 
lines in Figure 14 gives the correct gas and liquid flowrate values. Unfortunately in practice with 
most DP meters the gradients are not different enough for the area encompassed by the
uncertainty bands (not shown in Figure 14) to give an acceptable gas and liquid mass flowrate 
prediction uncertainty. Hence V-Cone and Venturi meters are not put in series as a wet gas 
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metering device and in Figure 14 the two meter results are shown together for tracer injection /DP 
meter comparison purposes only. 

With this simple correlation discussion showing a better V-Cone meter performance compared to 
the Venturi meter when using a tracer injection technique with wet gas correlations an obvious 
question is what difference in the gas mass flowrate uncertainty will be obtained using the more 
complex and accurate DP wet gas correlations and is the difference large enough to be of 
practical significance to the natural gas production industry? With the popular Venturi meter wet 
gas correlation [7] and the V-Cone correlation (equations 4, 4a to 4c) more complex here for 
simplicity a numerical example is now worked through. 

A random mid-range NEL wet gas loop flow point was selected for this example (from the DTI 
Flow Programme flow test data). The flow in the 6”, schedule 80 pipe at a nominal 60 Bar was 
13.91 kg/s of gas (682 m3/hr) and 8.1 kg/s of liquid. The gas density was 73.4 kg/m3 and the 
liquid density was 806.8 kg/m3. Therefore from equations 1 to 3 the Lockhart-Martinelli parameter 
was 0.176 and the gas densiometric Froude number was 2.94. The gas to liquid density ratio was 
0.091. Assuming for simplicity that both the V-Cone and Venturi meter have an expansion factor 
of approximately unity and approximately constant discharge coefficients (0.85 and 0.995 were
used respectively) with the known geometry of the meters (for this example 0.75 beta ratios were 
used) the dry gas differential pressures were predicted. From these known wet gas parameters 
the respective correlations were used to predict the actual wet gas differential pressures. For
each meter that set wet gas differential pressure was then held constant (as it would appear in a
real situation) for the calculations and the liquid flowrate input was varied and the associated gas 
flowrate predictions were calculated by the meter wet gas correlations. The results are plotted in 
Figure 15 along with the ±10% Tracerflow liquid mass flowrate estimation. The possible gas 
flowrate error induced by the liquid flowrates 10% uncertainty is shown for both meters. The 
shallower gradient of the Venturi meter is producing a wider spread of gas mass flowrate results
around the actual point associated with the liquid uncertainty than the steeper V-Cone gradient. 

Figure 15. A comparison of the liquid mass flow uncertainty induced gas mass flow uncertainty.  
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The V-Cone meter result was 13.91 kg/s ± 0.29 kg/s (±  2.1%). The Venturi meter result was 
13.91 kg/s ±  0.36 kg/s (±  2.6%). The difference of spread of ±0.5% was ±0.07 kg/s or      
±6 metric tonnes of gas / day for this modest flowrate example of 682 m3/hr. Therefore this result 
shows this issue is of practical significance to the natural gas production industry. 

Another advantage the V-Cone meter has over other DP meters with wet gas flows is there is 
some evidence from the 2003 NEL results that the V-Cone meter can cope with some wet gas 
flow upstream disturbance the inlet conditions. Many DP wet gas correlations are formed with wet
gas flows with straight unobstructed upstream flows and no mention of less than perfect 
conditions are mentioned in the various publications. In practice of course often ideal upstream
conditions do not exist. In the event there are no upstream obstructions close to the meter the
tracer fluids injected will have no mixing aids to help shorten the distance required to achieve the 
complete mixing of produced liquid and tracer fluid. A V-Cone meter is known to be an excellent
mixer and would aid the mixing of these liquids. 

A final advantage the V-Cone meter has over other DP meters when using the tracer injection
method is that in reality it is difficult for users to predict the precise Lockhart-Martinelli parameter.
If the prediction is for a relatively high number, say 0.28, and in reality it is actually, say 0.35,
most published DP meter wet gas correlations only operate up to 0.3 and so it is found that the
correlations are not useable after the system is bought and installed. During the latest NEL tests 
the 0.75 beta ratio V-Cone meter was tested beyond the old limit of Lockhart-Martinelli parameter 
of 0.3 and up to 0.5. The relatively few points taken (compared to the large data set at X<0.3) 
showed that the V-Cone meter still functions in flows up to Lockhart-Martinelli parameters of 0.5. 
That is, it continues to give predictable readings beyond 0.3. Figure 16 shows all the 2003 NEL
0.75 beta ratio V-Cone meter results.  

2003, 6", 0.75 Beta V-Cone Meter
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Figure 16. All the 2003 NEL 0.75 beta ratio V-Cone wet gas data set. 

Industry often assigns the Lockhart-Martinelli parameter value of 0.3 as the border between wet 
gas and multi-phase flow. Figure 16 shows that the V-Cone meter gives useable results after the
“wet gas” limit and continues to work into the multi-phase regime until the highest tested value at 
0.5 (which corresponded to a Gas Volume Fraction of 87%). An expanded wet gas correlation
was formed in the same form as equation 4, 4a to 4c. The functions of parameters A, B and C for
this expanded correlation are withheld in commercial confidence. There was some change in the 
gradient at these higher Lockhart-Martinelli parameters especially at the lower pressure. Figures 
17 and 18 show this. Due to this the expanded wet gas correlation to be used (at X>0.3 only) 
corrects the liquid induced gas mass flowrate error to ± 4%. Figure 19 shows this correction on 
all the existing NEL 0.75 beta ratio wet gas data (although its application will be for X>0.3 only). 
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2003  NEL Wet Gas Test
6", 15 Bar, 0.75 Beta V-Cone Meter
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Figure 17. The full 15 bar NEL 2003 0.75 beta ratio V-Cone wet gas flow results.

2003  6", 0.75 Beta V-Cone Meter 60 Bar, NEL Wet Gas Test
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Figure 19. The full 60 bar NEL 2003 0.75 beta ratio V-Cone wet gas flow results.

New Correlation Performance with All NEL Data
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Figure 20. The complete NEL 0.75 beta ratio V-Cone wet gas results and the expanded Lockhart-
Martinelli range correction results.  
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Figure 21 shows the expanded Lockhart- Martinelli range correction results alone.

New Correlation Performance with All NEL Data

Error = 4%

Error = -4%
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6

0 0.1 0.2 0.3 0.4 0.5

X

%
 E

rr
or 15 Bar Corrected

30 Bar Corrected

60 Bar Corrected

Figure 21. The expanded Lockhart- Martinelli range correction results for all NEL 0.75 beta ratio
V-Cone data.

Hence, the V-Cone meter is a good choice to use with tracer flow injection techniques as the 
correlation is proven, the meter is relatively insensitivity to the liquid mass flowrate uncertainty, it
has good liquid mixing abilities, it has the ability to work with at least some upstream obstruction 
and it will operate beyond the wet gas range into the upper GVF end of the general multiphase
flow range. 

4   A WET GAS FIELD TEST FOR THE WAFER-CONE METER 

In March 2001 BP tested a 4” 0.55 beta ratio Wafer-Cone in real wet flow upstream conditions at 
Whitney Canyon, Wyoming, USA. K. Bright of BP has kindly released the test results. Figure 22 
shows a sketch of the test set up. A 4” 0.55 beta ratio Orifice Plate meter was positioned
upstream of the Wafer-Cone meter 30 diameters downstream from a bend. The Wafer-Cone 
meter was positioned 36” downstream of this wet gas Orifice Plate meter. Both these meters 
were subjected to a wet gas flow as the natural gas flow had condensate and water entrained in
it. The separator was a further 12” downstream of the Wafer-Cone meter. After the separator an
identical dry gas flow Orifice Plate meter to that installed upstream of the separator was installed 
according to API 14.3. (This reference meter was proved with a mobile gas prover.) 

The average gas flowrate metered by the dry gas Orifice Plate meter was approximately 489,000 
SCFH. The gas molecular weight was quoted by BP as being 22.17 mW and the pressure was 
approximately 370 psia so the actual gas flowrate was approximately 523 m3/hr. The liquid 
loading was quoted by BP as being 3.93 barrels of condensate / million SCFH and 3.76 barrels of 
water / million SCFH. That is a total liquid flow of 7.69 barrels / million SCFH. At a gas flowrate of
489,000 SCFH the total liquid flowrate is 3.76 barrels (or 0.598 m3/hr). The mix of condensate
and water was therefore approximately 51% and 49% respectively. Taking water density to be
approximately 1000 kg/m3 and the condensate density as 635 kg/m3 (quoted by BP) this leads to 
the approximate homogenous liquid density of 773 kg/m3. The gas density is approximately 21.9 
kg/m3. Therefore converting volume flow to gas mass flow and applying equation 1 gives a 
Lockhart-Martinelli parameter in the upstream flow in the order of 0.007. BP declared the gas 
outlet to be effectively dry. 

The results read by BP over a 24 hour period are shown graphically in Figure 23.
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BP, Whitney Canyon,  Wyoming, USA.

Figure 22. The BP wet gas Wafer-Cone meter test set up. 
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Figure 23. The BP wet gas flow field test results. 

Figure 23 shows each meters average reading over each hour. It shows that the wet gas Wafer- 
Cone meter was seen to track the dry gas Orifice Plate reference meter better than the wet gas 
Orifice Plate meter even though the wet and dry Orifice Plate meters are identical. The wet gas 
Orifice Plate meter is seen to under-read the actual gas flowrate. There is evidence of the Orifice 
Plate meter under-reading with wet gas flows in the literature [9].  

It is generally accepted in industry that for very low Lockhart-Martinelli parameter values (typically 
X<0.02) dry gas DP meters can be used with no correction required as the liquid induced error 
will be negligible. With an approximate Lockhart-Martinelli parameter of 0.007 this condition 
therefore conforms to this situation. The relative error of the wet gas Orifice Plate and Wafer- 
Cone meters are shown compared to the dry gas Orifice Plate meter (i.e. the reference meter) 
base line in Figure 24. It is seen that the dry gas Orifice Plate meter and the wet gas Wafer-Cone
meter data points are mostly within ± 2% and the majority are actually within ± 1.5%. It should
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be noted that the API 14.3 quoted uncertainty for Orifice Plate meters with dry gas is 0.5% and
the Wafer-Cone meter uncertainty with dry gas is said to be 1%. Hence the points are mostly  

Wet Gas Orifice and Wafer-Cone Meter Comparison
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Figure 24. The relative error of the wet gas Orifice Plate and Wafer-Cone meters compared to
the dry gas reference meter.

within dry gas metering acceptability. In Figure 24 the points out with the ± 2% lines show the 
Wafer-Cone meter over-reading as would be expected with liquid presence. As the data is from a
field test and the conditions are not therefore held precisely these points represent averaged 
values and it is assumed that over each hour the higher over-readings of the Wafer-Cone meter 
are due to periodic small increases in the Lockhart-Martinelli parameter. The Orifice Plate meter 
appears to have a more significant negative error with many points below -2%. Therefore, in this 
test it is shown that for no correction applied the wet gas Wafer-Cone meter successfully tracked
the Orifice Plate dry gas reference meter whereas the wet gas Orifice Plate meter did not. Over 
the course of the 24 hour test the Orifice Plate dry gas reference meter read a total 11.737 million
SCF, the wet gas Orifice Plate meter read a total of 11.509  million SCF and the wet gas Wafer- 
Cone meter read 11.771 million SCF. Therefore the wet gas Orifice Plate meter read 228,100 
SCF low an over all difference of -1.9%. The wet gas Wafer-Cone meter read 33,900 SCF high
an over all difference of +0.3%. Hence, if the Wafer-Cone meter was installed in this application 
alone rather than an Orifice Plate meter the meter operator would avoid registering 228,100 
SCF/day of gas low and register 33,900 SCF/day high thus vastly reducing the exposure to error
for buyer and seller. In particular the producer would not be giving away a free 228,100 SCF/day. 
Therefore, the Wafer-Cone meter is a good choice for use in unprocessed wet natural gas flows
with low Lockhart-Martinelli parameter values. The results are summarised in Table 1.  

 Dry Gas Orifice 
Plate Meter 

Wet Gas Orifice  
Plate Meter 

Wet Gas Wafer- 
Cone Meter 

Total Volume Flowrate  
 (Million SCF) 11,737,000 11,509,000 11,771,000 

Absolute Difference 
Between Dry and Wet 
Meters (Million SCF) 

N/A -228,100 +33,900 

% Error 
Between Dry and Wet 

Meters
N/A -1.9 +0.3 

Table 1. The wet gas Orifice Plate and Wafer-Cone meters performance over 24 hours 
compared to the dry gas reference meter.  
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The raw data collected by BP is shown in Table 2. 
Dry Gas 
Orifice 
Plate  
Meter 

Wet Gas 
Wafer- 
Cone
Meter 

Wet Gas 
Orifice 
Plate Meter 

Upstream
Pressure 

Upstream
Temperature

--DATE-- --TIME-- MCFH MCFH MCFH -PSIA- -DEGF- 

1/22/2001 17:00:00 504.41 504.053 489.526 373.5 119.9
1/22/2001 18:00:00 496.5 509.756 495.586 375.6 119.9
1/22/2001 19:00:00 526.25 519.024 505.496 374.9 119.6
1/22/2001 20:00:00 504.04 496.692 484.337 371.7 119.5
1/22/2001 21:00:00 484.87 495.705 482.686 371.9 119.4
1/22/2001 22:00:00 493.45 500.691 488.556 373.2 119.4
1/22/2001 23:00:00 506.04 502.829 491.551 373.8 119.4
1/23/2001 0:00:00 503.08 497.401 485.979 369.8 119.3
1/23/2001 1:00:00 496.79 491.94 480.75 369.4 119.3
1/23/2001 2:00:00 490.04 487.84 476.625 371.2 119.3
1/23/2001 3:00:00 491.04 495.004 484.341 371.5 119.2
1/23/2001 4:00:00 504.5 500.487 490.445 372.3 119.2
1/23/2001 5:00:00 486.87 488.422 477.947 370.7 119
1/23/2001 6:00:00 484.45 484.779 474.372 369 119
1/23/2001 7:00:00 479.67 483.022 472.455 368.4 119
1/23/2001 8:00:00 483 479.931 469.689 366.5 118.9
1/23/2001 9:00:00 479.58 477.279 467.129 367.8 118.9
1/23/2001 10:00:00 476.83 476.231 466.232 370.9 118.8
1/23/2001 11:00:00 478.54 486.98 477.817 361.3 118.6
1/23/2001 12:00:00 481.29 481.302 472.392 362.8 118.6
1/23/2001 13:00:00 463.2 470.997 462.513 376.7 118.7
1/23/2001 14:00:00 471.2 470.623 461.351 373.2 118.7
1/23/2001 15:00:00 474 470.861 461.711 373 118.7
1/23/2001 16:00:00 477.33 499.061 489.357 355.3 118.6

Total Flow 11736.97 11770.91 11508.84
Table 2. Raw data from BP wet gas field test (reproduced with permission). 

5 CONCLUSIONS   

It is concluded from repeat tests at NEL of a 6”, 0.75 beta ratio V-Cone meter that the previously 
published wet gas performance [5] is repeatable and that a disturbance 10 diameters upstream of 
the V-Cone meter inlet has no noticeable effect on the performance of the V-Cone meter with wet 
gas flows. From analysis of the CEESI wet gas 0.75 beta ratio V-Cone results it is concluded that
the previously published wet gas correlation [5] can be applied to neighbouring pipe sizes, fluid 
types and gas flowrates than were not in the correlations data set. It is further concluded that NEL
and CEESI wet gas loops produce similar DP meter behaviour even though the pipe size, gas 
flowrate range and fluid types are different.  

From consideration of the known wet gas flow performances of different DP meters it is 
concluded that the V-Cone meter shows advantages over other DP meter designs when 
employing the tracer injection technique to form a system that meters both the liquid phases
flowrates and the gas phase flowrate.  

Finally, it is concluded that for unprocessed natural gas flows with low Lockhart-Martinelli
parameter values the Wafer-Cone meter is a good choice of meter. 
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Notation 

X     The Lockhart-Martinelli parameter 

g
.

m    The actual gas mass flowrate 

l
.

m  The actual liquid mass flowrate 

( )tpg

.
m    The over estimated gas mass flowrate using the read wet gas differential pressure 
ρg    The gas density
ρl    The liquid density  

tpP∆   The read wet gas (or “two-phase”) differential pressure 

gP∆   The gas superficial differential pressure 

dC  The discharge coefficient  

gFr    The gas densiometric Froude number         

sgU The superficial gas velocity
g      The gravitational constant 
D         The meter inlet diameter 
A      The meter inlet cross sectional area
E      The DP meter Velocity of Approach
Y      The DP meter expansibility factor
M        The Murdock gradient
MSCF        Thousand standard cubic feet 
SCFH         Standard cubic feet per hour
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